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A survey is made of periodic three-dimensional assemblies of equal spheres in which each sphere has 
from 6 to 11 nearest neighbors. Space group data are derived for 34 of the more dense sphere packings 
formed by stacking planar layers of three kinds. The relation of the density of sphere packings to 
coordination number and the “symmetry-equivalence” of spheres are briefly discussed. o 19x7 Aca- 

demlc Press, Inc. 

Introduction 

It has long been known that the closest 
packings of equal spheres are those in 
which each sphere is in contact with 12 
equidistant neighbors. An indefinitely large 
number of packings may be built from pla- 
nar layers in which each sphere is in con- 
tact with six others; a unit cell of the layer 
is shown in Fig. Ic. When such layers are 
packed in the closest possible way each 
sphere is in contact with three spheres of 
each adjacent layer, making a total of 12 
contacts in all. The density of all these ar- 
rangements of spheres, assumed to extend 
indefinitely in three dimensions, is 0.7405, 
defined as the volume fraction of space oc- 
cupied by the spheres. The two simplest 
packings are hexagonal closest packing 
(hcp) and cubic closest packing (ccp), in 
which the layer sequence repeats after two 
and three layers, respectively; these are 
also the only two closest packings in which 
each sphere has the same arrangement not 
only of nearest neighbors but also of all 
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more distant neighbors. Cubic closest pack- 
ing, which is the most symmetrical of these 
sphere packings, also results from stacking 
the layers formed from the repeat unit of 
Fig. la. Other sphere packings may be 
formed from this and other less densely 
packed planar layers of spheres, and it is 
appropriate to mention here two earlier 
studies in this field (1,2). Unfortunately the 
brief communication of Clarke seems not to 
have been followed by the more complete 
account promised by the author. Both of 
these studies covered coordination num- 
bers (C.N.s) ranging from 3 to 12, but Slack 
also enquired what meaning is to be at- 
tached to the terms “least dense” and 
“most dense” when applied to packings of 
equal spheres. 

Certain packings of 8-, 9-, IO-, and 1 l-co- 
ordination tend to be singled out as having 
high densities for their particular C.N.s, no- 
tably the body-centered cubic (bee) packing 
of &coordination, the body-centered te- 
tragonal packing of lo-coordination, and 
more recently the tetragonal packings of 9- 
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FIG. 1. Arrangement of equal spheres in (a) 4t-layer, 
(b) 4-layer, and (c) &layer. The larger black dots mark 
positions of spheres in adjacent layers for 2-contacts, 
and the small black dots in the spaces between the 
spheres mark positions for 4-contacts in (a) and for 3- 
contacts in (b) and (c). 

and 1 l-coordination to which we refer later: 

C.N. 8 9 10 11 
Density 0.6801 0.6911 0.6981 0.7187 

However, it has been pointed out (2) that 
although we can expect to characterize the 
least dense packing for a given C.N. this is 
not possible for the most dense packing, a 
point also noted by O’Keeffe (3) in connec- 
tion with the 11-packing which represents 
the anion packing in the (idealized) t-utile 
structure (4). We deal with this point 
shortly, and simply note here that Slack in- 
troduced an admittedly arbitrary limitation 
on the ratio d,ld where dl is the distance to 
the next-nearest neighbors of a sphere sur- 
rounded by N spheres at the distance d. It 
was in fact the paper of Slack which sug- 
gested the present study, which in the main 
is a study in more detail of the arbitrariness 
of defining density for specified C.N.s. 
Since it is evident that the “specially 
dense” packings of C.N. less than 12 do not 
have the highest possible density for these 
particular C.N.s it is necessary to enquire 
as to what the special features of these 
“high-density” sphere packings are and 
what meaning (if any) is to be attached to 
the densities of packings of particular 
C.N.s (other than 12). 

The packings to be described shall have 
the following properties: 

(i) all spheres have the same radius, here 
taken as unity; 

(ii) each sphere shall be in contact with 
the same number N of other spheres; 

(iii) the packing shall repeat periodically 
in three dimensions; and 

(iv) the immediate environment of each 
sphere shall be the same (or its mirror im- 
age). 

Sphere Packings Formed by Stacking 
Planar Layers of Spheres 

We shall consider here the sphere pack- 
ings formed by stacking the three layers of 
Fig. 1, which are chosen because they are 
related to the three most symmetrical three- 
dimensional lattices in the following ways: 

4t-layer: parallel to the 3 (100) planes of 
the cubic P lattice, 

4-layer: parallel to the 6 (110) planes of 
the cubic I lattice, 

6-layer: parallel to the 4 { 111) planes of 
the cubic F lattice. 
The 4t-layer, which is the 4-layer of Slack, 
has the special property that the P and F 
packings represent the least dense and most 
dense packings of this layer. 

We now examine the ways in which the 
layers of Fig. 1, assumed to be horizontal 
and similarly oriented, may be superposed. 
When a second layer (of the same kind) is 
placed above the first there are a number of 
special positions for a sphere of the upper 
layer: 

l-contact: Each sphere falls directly 
above a sphere of the layer below. Continu- 
ation of this process leads to the sphere 
packings l-4t-1, 1-4-1, and 1-6-1, which are 
the packings of minimal density formed 
from these layers. 

2-contact: Spheres fall above points D of 
the layer below. For the 4-layer the posi- 
tions E also result in 2-contacts, but pack- 
ings involving this type of contact are less 
dense than those resulting from D contacts 
and have not been studied systematically. 
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There is only one position of type D per 
sphere for the 4-layer but two for the 4t- 
layer and three for the 6-layer. Combina- 
tions of contacts of type D, D’, etc., be- 
tween successive pairs of 4t- or (i-layers 
lead to infinite families of polytypes. 

3-contact: Spheres fall above points B, of 
which there are two equivalent positions 
per sphere above (or below) a 4-layer or 6- 
layer; for the 4t-layer 3-contacts are not 
possible. If there are 3-contacts on both 
sides of each 4- or 6-layer the packings are 
the densest possible for these layers, and in 
both cases there is an infinite family of po- 
lytypes. For the 6-layer B’ is usually called 
C in the conventional description of closest 
packings. 

4-contact: This is possible only for the 4t- 
layer, giving the unique cubic closest pack- 
ing, also described as all-face-centered-cu- 
bic (fee) packing. 

Dimensional data for the layers of Fig. 1 
are listed in Table I. We restrict our study 
to packings in which each layer has the 
same types of contact with adjacent layers 
to ensure that the C.N. of each sphere is the 
same. The layer sequences to be studied 
are listed in Table II, in which the symbol 
for a packing shows the type of contact on 
each side of every layer. Certain packings 
in which the type of contact is the same on 
both sides of each layer correspond to the 
three cubic lattices: 

TABLE I 

DIMENSIONALDATA FORTHE&,4-, ANDY-LAYERS 

4t-Layer 

An& aAa 90 
Distance AA’ 2.828 (2x?!) 

aa’ 2.828 
‘a/AA - 

F’erpendicular distance 
between layers 
l-contact (A) 2 
Z-contact CD) 1.732 (ti) 
3-contact (B or C) - 
Ccontact 1.414 

Area of layer per sphere 4 

4-Layer CLayer 

70”32’ 60” 

3.266 (2X%?% 3.461 (2%9/j) 
2.309 (4%‘% 2 

318 II3 

2 2 

1.633 1.732 
1.581 (%%I 1.633 

- - 
3.771 (8fi3) 3.464 

TABLE II 

SPHEREPACKINGS DERIVEDFROMTHE~~-,4-,AND 

6-LAYERS 

C.N. 4t-Layer 4-Layer 6-Layer 

6 I-4t-1 1-4-1 - 
7 I-4t-2 l-4-2 - 
8 2-4t-2” 2-4-2 1-6-l” 

l-4-3 
9 I-4t-4 2-4-3 l-6-2 

10 2-4t-46 3-4-3 l-6-3* 
2-6-2 

11 - - 2-6-3 
12 4-4t-4” - 3-6-3” 

0 Pairs of identical structures (see text). 
* Different structures with the same density. 

C.N. 
l-4t-1 P cubic lattice 6 
2-4-2 I cubic lattice 8 
4-4t-4 
3-6-3 I F cubic lattice 12 

There are alternate symbols for cubic clos- 
est packing, but it should be noted that the 
packing 4-4t-4 is a unique packing of 4t-lay- 
ers whereas the symbol 3-6-3 corresponds 
to an infinite family of packings of C.N. 12 
because of the alternate positions for 3-con- 
tacts. Only one of these packings is the 
same as 4-4t-4. Conversely, there is only 
one 1-6-l packing and this corresponds only 
to the simplest 2-4t-2 packing in which all 
contacts are of type D’ or D” (Fig. 1); mix- 
tures of D’ and D” contacts give an infinite 
series of more complex 2-4t-2 packings. In 
Table II the least dense packings are at the 
top of each column and the most dense at 
the bottom. 

Evidently the sphere packings corre- 
sponding to the symbols of Table II are, 
except for those of C.N. 12, the packings of 
minimal density for a given C.N. built from 
the layer speciJied. If the’number of con- 
tacts made by any sphere with spheres of 
adjacent layers is less than the maximum 
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possible, the density of the packing may be 
increased by sliding one layer over the 
other (a process we call “shearing”) be- 
cause the perpendicular distance between 
layers decreases as the number of contacts 
increases (Table I). If the C.N. is defined 
simply as the number of spheres with which 
each is in contact it remains constant at the 
lower value until actual contact with addi- 
tional spheres of the adjacent layer(s). For 
example, the position D in Fig. lb for a 2- 
contact of the 4-layer corresponds to mini- 
mal density and is situated between two 
symmetry-related positions B and C for 3- 
contacts. According to whether shearing 
takes place on one or both sides of the layer 
the packing 2-4-2 will tend toward 2-4-3 
(C.N. 9) or 3-4-3 (C.N. 10). Obviously the 
most extreme case is that of the 4t-layer 
(Fig. la) where a l-contact (A) could tend 
toward a 2-contact (D’) or directly toward a 
4-contact, the C.N. changing from N to 
N + 1 or N + 3. If these changes take place 
on both sides of each layer, N changes to N 
+ 2 or N + 6, that is, l-4t-1 2-4t-2 4-4t-4. 
Summarizing: 

(a) There is no maximal density for any 
C.N. except 12, for which the maximal and 
minimal densities are the same. 

(b) If the number of contacts made by 
each sphere on both sides is the greatest 
possible number for that layer then the den- 

sity of the packing is the maximumfor that 
layer and C.N. These maxima are those of 
the packings 

4-4t-4 C.N. 12 Fm3m 
3-4-3 C.N. 10 Zmmm 
3-6-3 C.N. 12 Fm3m 

(c) We can give the minimal density for a 
packing of given C .N . built from a specified 
layer if the number of contacts on either 
side or on both sides isfewer than the maxi- 
mum possible (4 for a 4t-layer, 3 for the 4- 
and 6-layers). 

(d) All other packings can be sheared to 
increase the density without increasing the 
C.N. until the point is reached when further 
contacts are made by each sphere with 
spheres in adjacent layers. Some sheared 
structures are listed in Tables III-V, where 
S or SS after the layer symbol indicates 
shearing on one or both sides of each layer. 

Realizing the difficulty concerning the 
definition of “densest” packing for a given 
C.N., Slack introduced an (admittedly arbi- 
trary) lower limit to the ratio of the distance 
dl to the next-nearest neighbors to the dis- 
tance d to the nearest neighbors. The struc- 
tures satisfying the condition d,ld 2 <5 
(or 4X&> are listed on the left in Table III. 
Of these packings four involve shearing of 
structures based on 6-layers; one is a 
sheared version of a l-5-1 packing based on 

TABLE III 

COMPARISON OF Two SETS OF DENSE SPHERE PACKINGS 

“Most dense” packing for 
Slack d,ld 2 fl Point symmetry Density Density Packing Point symmetry 

11.1 2-6-3 I or II m 0.7187 0.7187 2-6-3 T* mm 
11.2 2-6-3 T” mm 0.7187 
10.1 
10.4 

2-6-2 lormm 0.6981 0.7025 3-4-3 1 mmm 
4lmmm 0.6981 

9.4 1-6-2 S 0.663 1 0.6911 2-4-3 T” mm 
8.10 1-6-l s 2 or 2/m 0.6315 0.6801 2-4-2 m3m 
7.9 1-5-1 s 0.5810 0.6115 l-4-2 mm 
6.14 l-4t-1 (compressed) 3m 0.5924 0.5553 l-4-1 mmm 

a Highest symmetry with nonplanar layers. 
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TABLE IV 

DISTANCESTONEARESTAND NEXT-NEARESTNEIGHBORS IN SPHERE PACKINGS 

2.000 
2.450 
2.828 
3.098 
3.162 
3.414 
3.464 

Density 

2.000 
2.309 
2.582 
2.828 
3.055 
3.162 
3.240 
3.266 
3.442 
3.464 

Density 

2.000 
2.828 
3.266 
3.301 
3.464 

Density 

I-6-1-S l-6-2 1-6-2-s 
8 9 
4 ; 4 
4 6 2 

- - - 
4 4 6 

8 8 9 
0.6315 0.6480 0.6631 

1-4-l 14-2 2-4-2-E 
6 8 
2 2 
- - 4 

8 4 
4 2 4- 

- - - 

2- 6- 2- 
- - - 
- - 10 

0.5552 0.6115 0.6412 

I -4t- 1 l-4t-2 l-6-3 
6 7 10 

12 12 9 
- - - 

8- 
- 

6- 12 
0.5236 0.5612 0.6657 

3-4*-3 
10 
4 

- 
2 
6 

- 
8 
0.6981 

I-4-3 
8 
2 
1 
4 
4 
- 
- - 

2 12 
- - 

4 - 
0.6203 0.6801 

2-4t-4 
10 
8 

- 
4 

10 
0.6657 

2-6-2 II 2-6-2 I 2-6-3 T 
IO IO 11 
4 4 2 

- - 3 

8- 8- 4- 
- - 4 

10 12 10 
0.6981 0.6981 0.7187 

2-4-2-D 
8 
6 

- 
- 
- 
- 

R-4 
l-6-2 SS 

9 
3 
1 
2 
2 

- 

2-4-3-D 
9 
4 

5- 

8- 
0.6778 

- 
2 

- 
2 
6 

- 
4 
0.6911 

Cc) 
hw 

12 
6 
2 

ccp 
12 
6 

- 
- - 

18 24 
0.7405 0.7405 

2-6-3 I 
11 
2 
3 

- 
4 
2 

14 
0.7187 

2-4-3-T 
9 
4 
I 

2- 
- 

4 
4 

- 
2 
0.691 I 

3-4-3-U) 
IO 
2 
2 

- 
4 

- 
- 

4 
- 

12 
0.7025 

3-4-3-(U) 
IO 
2 
2 

- 
4 
2 

2- 

8- 
0.7025 

2-6-2-S 2-6-3 S 
10 11 
2 I 
2 I 

- 3 
4 2 

- - 
- 

4 2- 
2 2 

IO 14 
0.7025 0.7209 

No&. The numerologically minded reader may notice that the more important distances to more distant neighbors in 
many sphere Packings belong to two series of numbers, namely, V% in (a) and 2a in (b): 

(a) I?!= 2 3 4 5 6 
2.000 2.449 2.828 3.162 3.464. and 

(b) n = 2.L 4 5 6 7 8 2.309 2.582 2.828 3.055 3.266 3.164 

the plane net (33434) of Fig. 2, and one is a 
compressed version of I-4t-1. As these 
packings are not included in Table V we 
give details here. 

The packing l-5-1 (Slack 7.9) is a sheared 
version of his packing 7.4, which is formed 
by stacking the 5-connected layers (33434) 
vertically above one another. This tetrago- 
nal structure is described by the position 
4(g), (xX0), in P4/mbm, point symmetry 
mm.Witha=b=fi(l+fi),c=2,and 
x = &(l + %?), the density is the same 
(0.5612) as that of the two l-4t-2 structures 
included in Table V. The density is in- FIG. 2. The Sconnected plane net (33434). 
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TABLE V 

Symbol Density Space group Eq. pow. n b c P Point symmetry Notes 

6-coordination 
1-4-l 0.5552 
l-4t-1 0.5236 

7-coordination 
l-4-2 0.6115 
l-4t-2 I 0.5612 
l-4t-2 II 0.5612 

8-coordination 
2-4-2 0.6801 
l-6-1 S 0.6552 
1-6-1 S 0.6315 
l-4-3 0.6203 

1-6-l 
2-4t-2 oh046 I 

9-coordination 
2-4-3 I 0.6911 

2-4-3 II 0.6911 

2-4-3 T 0.6911 
l-6-2 SS 0.6782 

l-6-2 S 0.6631 

l-6-2 0.6480 
I-4t-4 0.6134 

IO-coordination 
3-4-3 I 0.1025 
3-4-3 I1 0.7025 
2-6-2 S 0.1025 
3-4*-3 I 0.6981 
3-4*-3 11 0.6981 
2-6-2 II 0.6981 

2-4t-4 0.6657 
l-6-3 I 0.6657 
I-6-3 II 0.6657 

1 l-coordination 

2-6-3 I 0.7187 

2-6-3 11 0.7187 Cmca 

2-6-3 T 0.7187 P4dmnm 

2-6-3 S 0.7209 C2lm 

Cmmm 
Pm3m 

Fmmm 
Cmmm 
14,lamd 

Im3m 
C2lm 
C2lm 
C2lm 

P6lmmm 

C2lm 

Cmca 

P42/mnm 
C2lm 

C2lm 

Fmmm 
I4lmmm 

lmmm 
Cmcm 
Pnna 
Mlmmm 
Cmcm 
p31 

Cmcm 
P63/mmc 
R3m 

C2lm 

2.309 3.266 2 
2 2 2 

- 
- 

mmm 
m3m 

3.266 1.266 2.309 
2 1.464 2 
2 2 14.928 

- 
- 
- 

mm 
mm 
mm 

2.309 2.309 2.309 - m3m 
3.464 2 2 112.63” 2/m 
3.464 2 2 106.78” 2/m 
3.266 2.309 4.122 119.41” m 

2 2 2 120”(Y) 6lmmm 

3.266 2.309 3.240 91.24” m 

2.309 3.266 6.428 - m 

3.239 3.239 2.309 - mm 
3.464 2 3.648 102.7” m 

3.464 2 4.3166 122.34” m 

7.464 2 3.464 
2 2 6.828 

- 
- 

mm 
4mm 

2.582 2.309 2 
2.309 3.266 3.162 
3.464 3.443 2 
2.450 2.450 2 
2.450 3.162 3.098 
2 2 5.1% 

- 
- 
- 
- 

12WY) 

mmm 
mm 
2 
4lmmm 
mm 
1 

2 6.292 2 - 
2 2 7.266 120”(r) 
2 2 10.90 120”(Y) 

Y,” 
3m 

3.464 2 

2 3.464 

3.414 3.414 

3.464 2 

3.414 

6.730 

2 

3.442 

99.14” 

- 

102.93” 

m 

m 

mm 

m 

y  = 0.1376 

z = 0.0670 

x = 0.1745 
z = 0.2192 

x = 0.2185 
z = 0.2460 
y  = 0.1875 
z = 0.1230 
x = 0.2818 
x = 0.1685 
z = 0.2581 
x = 0.0917 
z = 0.2625 
x = 0.134 
z = 0.1464 

y=ik 
x=3$ 

y=t 
x=f 

Y=i 
y  = 0.1376 
z = 0.1124 
z = 0.0918 

x = 0.2929 
z = 0.7574 

i 
Y’t 
z = 0.3787 
x = 0.2929 

l 
x = 0.2791 
z = 0.7566 
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creased to 0.5810 by shearing, when the 
symmetry becomes monoclinic. Slack’s 
6.14 is formed by compressing the P cubic 
packing l-4t-1 along [I 11] to the stage at 
which it is a packing of (6 + 8)-coordina- 
tion. It is simply a packing intermediate be- 
tween P cubic and I cubic [(8 + 6)-coordina- 
tion]. Th_e details are: rhombohedral, space 
group R3m, point symmetry ?m, or for the 
hexagonal setting, 3(a), (000), Q = V%, 
c=ti. 

Slack’s 6-packing is more dense than his 
‘I-packing; moreover, his list does not in- 
clude the notably dense bee packing. These 
complications are avoided in the set of 
packings on the right of Table III, all of 
which (except the 1 l-packing) are based on 
the 4-layer of bee packing, which cannot 
form a packing of 1 l-coordination. The two 
sets of packings are compared in Fig. 3. 
The first few sets of more distant neighbors 
(Table IV) show that in fact our packings 
correspond to dlld 2 1.155 (or 2/G) in- 
stead of Slack’s 1.225 except for 2-6-3 I and 
II, in which there are no next-nearest neigh- 
bors closer than 1.225. If we made our con- 
dition dl/d 2 1.155 we could include the 
more dense 2-6-3 S, but this (monoclinic) 
structure is preferably omitted for it is a 

0.55 11” 1 I I I I 
6 7 e 9 IO I, I2 

COORDINATION NUMBER 

FIG. 3. Densities of sphere packings for C.N.s 6-12. 
The upper and lower curves correspond to the pack- 
ings on the right and left, respectively, of Table III, 
and the broken line would continue Slack’s curve to 
the value for l-4t-1. 

sheared structure, whereas all the others 
are minimal density packings as defined 
earlier. 

The important feature of the packings on 
the right of Table III, which is not a prop- 
erty of the packings of 6-, 7-, 8-, and 9- 
coordination in the left-hand column, is that 
each type of contact in the layer symbol of 
a packing other than a 3-contact for 4- and 
B-layers or a 4-contact for the et-layer cor- 
responds to a minimal density relation be- 
tween a pair of layers, that is, to a position 
symmetrically situated between two posi- 
tions corresponding to higher C.N. s. 

The Symmetry of Coordination Groups 

Related to this property of these packings 
is the high point symmetry of the coordina- 
tion groups, which have either two or three 
planes of symmetry in the most symmetri- 
cal forms of the packings. In the case of the 
9- and II-packings the most symmetrical 
forms result from corrugation of the layers. 
The predominance of planar symmetry is to 
be expected in packings formed from the 6- 
and 4-layers if the symbol is of the symmet- 
rical type 3-6-3, 2-4-2, or 1-4-1 owing to the 
symmetry of these layers, and these pack- 
ings have in fact the coordination groups 
with the highest point symmetries. In the 
packings with unsymmetrical symbols high 
point symmetry is found only if the layers 
are nonplanar (2-6-3, 2-4-3) or if the struc- 
ture is very simple (l-4-2). The structures 
on the left of Table III present a very differ- 
ent picture, for highly symmetrical coordi- 
nation groups are found only in the pack- 
ings of ll-, lo-, and 6-coordination. The 
sheared structures of 9-, 8-, and 7-coordina- 
tion have only monoclinic symmetry and 
therefore at most one plane of symmetry. 

The Symmetry-Equivalence of Spheres 

Our condition (iv), that the immediate en- 
vironment of each sphere shall be the same 
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(or its mirror image), implies only that each 
layer is related in exactly the same way to 
the two layers in contact with it. Any pack- 
ing built from planar layers that can be 
given a symbol of the type listed in Table II 
satisfies this condition. A more stringent 
condition is that the complete environment 
of each sphere is the same; this implies that 
the centers of the spheres form a set of 
equivalent positions in one of the 230 space 
groups. The spheres in such a packing are 
described as “symmetry-equivalent.” It 
might have been expected that this prop- 
erty would be peculiar to a small number of 
packings. In fact it is not in general a very 
restrictive condition, for it is satisfied by all 
the packings of Tables III-V. Nevertheless 
it does exclude, and for different reasons, 
two categories of sphere packing, and it is 
therefore necessary to examine this matter 
of symmetry-equivalence in a little more 
detail. 

(i) If there are alternate contacts of a 
given type between the layers, as for 2-con- 
tacts between 4t-layers, 2- or 3-contacts be- 
tween 4-layers, or 2- or 3-contacts between 
6-layers, then the symbol involving such 
contacts corresponds to an indefinitely 
large number of structures with increas- 
ingly complex layer sequences. There is an 
upper limit to the number of equivalent po- 
sitions in a given set in space groups of each 
of the crystal systems, this number ranging 
from 2 (triclinic) through 8 (monoclinic), 32 
(orthorhombic), to 192 (cubic). The spheres 
in a packing evidently cannot be symmetry- 
equivalent if the number of spheres in the 
unit cell exceeds the maximum appropriate 
to the symmetry of the packing. If sphere 
packings are derived by stacking layers of a 
particular kind it is, of course, essential to 
check that the most obvious unit cell is the 
smallest one for that packing. For example, 
the two lo-packings 3-4-3 and 3-4”-3 which 
are described later repeat after five and 
eight layers, respectively, suggesting Z = 
10 or 16 if one axis is perpendicular to the 

layers. However, these two packings are 
referable to bc orthorhombic and bc tetrag- 
onal cells containing only two spheres. 

(ii) A high value of Z resulting from a 
complex layer sequence is not the only rea- 
son for nonequivalence of spheres. This is 
evident from the fact that the only symme- 
try-equivalent packings 3-6-3 are hexagonal 
and cubic closest packings (sequences AB 

and ABC . . .), while the next mem- 
ber ‘of the family (ABAC . . .) has only 
four spheres in the unit cell but consists of 
two sets of nonequivalent spheres, the posi- 
tions 2(a) and 2(d) in P6Jmmc. As the high- 
est number of equivalent positions in a hex- 
agonal space group is 24, the reason for the 
nonequivalence of spheres in this packing is 
clearly not the high value of Z. The situa- 
tion is similar in lo-packings l-6-3, of which 
the only two of the infinite series of pack- 
ings which have symmetry-equivalent 
spheres are AABB . . . and AABBCC . . . 
(3). 

Finally we note that the requirement of 
symmetry-equivalence does not eliminate 
the indefinitely large numbers of packings 
which represent transitions between pack- 
ings of different C.N.s, for example, pack- 
ings intermediate between 2-6-3 T and hex- 
agonal closest packing. These merely 
correspond to different values of the cell 
dimensions a and b and different values of x 
and y in the position 4(g), (x, y, 0) in the 
space group Pnnm, in which space group 
hcp also may be described. Similarly, 
sheared versions of 2-6-3 may all be de- 
scribed by the position 4(i) in C2/m. 

The Sphere Packings of Table V 

The following paragraphs amplify the 
data summarized in the Table. Some of the 
packings are illustrated in Figs. 4-12, of 
which all except Fig. 5 are projections. In 
these projections the layers (4t-, 4-, or 6-) 
run from left to right and are normal to the 
paper. Open and filled circles represent 
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FIG. 4. The packing l-4-2 projected on (001). There 
are no additional contacts in a direction normal to this 
projection. 

(b) 

FIG. 5. (a) Unit cell of the 3-connected net 10) - b (c 
axis vertical) showing the three nearest neighbors 
(black circles) of one point and its two sets of four 
next-nearest neighbors (dotted circles). (b) Portion of 
the net (on the same scale) showing the relation of the 
four additional nearest neighbor in the packing l-4t-2 
II to four of the next-nearest neighbors in (a). 

PIG. 6. Projection of the packing 2-4-3 I on (010). 

spheres at height zero or one half of the 
repeat distance normal to the plane of pro- 
jection. 

Sphere Packings of C.N. 6 

Both of the packings listed in Table V are 
lattice packings, 1-4-1 (Cmmm) having the 
higher density but lower point symmetry 
mmm as compared with m3m for l-4t-1 (cu- 
bic P lattice). 

Sphere Packings of C.N. 7 

There is only one l-4-2 packing (Fig. 4) if 
the D positions are used for 2-contacts, but 
there is an infinite family of the less dense 
l-462 packings. The simplest of these, l-4t- 
2 I, has orthorhombic symmetry and four 
spheres in the repeat unit. It has been de- 
scribed previously as the packing No. 11 of 

(a) (bl 

FIG. 7. (a) Projection of 2-4-3 II on (100) compared 
with (b) projection of 2-4-3 T on (001) (two unit cells). 
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FIG. 8. Projection of l-6-2 SS on (010). Each sphere 
makes two additional contacts in a direction normal to 
this projection. 

FIG. 9. Projection on (010) of bc orthorhombic cell 
of 3-4-3 I showing its relation to three 4-layers which 
are normal to the paper and run from left to right. 

Clarke and the packing 7.5 of Slack. The 
next simplest member of this family, l-4t-2 
II, is more symmetrical though the point 
symmetry remains the same (mm). This te- 
tragonal packing (Z = 8) is of interest for it 
has the same space group and equivalent 
positions as the 3-packing (Slack 3.6) in 
which the spheres occupy the positions of 
the points of the 3-connected net lo3 - b 
(5). The 3-packing and 7-packing are re- 
lated as follows: 

FIG. 10. Projection of 3-4-3 II on (100). 

FIG. 11. Projection of 2-6-3 I on (010). 

C.N.3c:a=2fi,z=&,and 
C.N. 7 c: a = 2(2 + ti), z = t(2 + ti). 

The contraction of the tetragonal a axis 
from 2fi to 2 implies extension of the c 
axis from 12 to 4(2 + fi), for the bond 
angles at a point change from three of 120” 
to one of 60” and two of 150”. The 
orthorhombic and tetragonal l-4t-2 pack- 
ings have very similar distances to more 
distant neighbors; the numbers in Table IVc 
therefore apply to both these packings. 
There are only minor differences after 80 
neighbors beyond the first coordination 
sphere. 

Sphere Packings of C.N. 8 

The densities of 8-packings range from 
0.6801 (bee) to 0.6046. There is only one l- 
6-l packing of minimal density but an infi- 
nite number of 2-4t-2 packings (since there 
are alternate positions for 2-contacts be- 

c 

(a) (b) 

FIG. 12. (a) Projection of 2-6-3 II on (100) compared 
with (b) projection of 2-6-3 T on (001) (two unit cells). 
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tween 4t layers), one of which is the mini- 
mal density l-6-1. This very simple packing 
(Clarke No. 12, Slack 8.4) consists of 6- 
layers stacked vertically above one an- 
other. It is a lattice packing, the hexagonal 
analog of primitive cubic packing. A second 
packing 2-4t-2 (Clarke No. 13), not included 
in Table V, is of interest as having the same 
space group and axial ratio as the 3-packing 
mentioned in the preceding paragraph. 
Sphere centers are at the positions 4(a), 
(000, O#) of Z4Jumd, with a = 2 and c = 
4V?. Packings with intermediate densities 
include the l-4-3 family, of which only the 
simplest is included in Table V, and all 
sheared l-6- 1 packings, of which two exam- 
ples are given. 

Sphere Packings of C.N. 9 

Packings of C.N. 9 can be formed from 
all the layers of Fig. 1, namely, l-4t-4, 2-4- 
3, and l-6-2. There is only one l-4t-4 pack- 
ing but infinite families of “least dense” 
2-4-3 and l-6-2 packings because there are 
alternate positions for 2- and 4-contacts be- 
tween 4-layers and of 2-contacts between 6- 
layers. We have considered only D-type 
contacts between 4-layers because pack- 
ings 2-4-3 E have the density 0.6703 and are 
not of special interest. Sheared versions of 
2-4-3 packings correspond to transitions to 
3-4-3 packings and are not recognized as 
distinct packings. In the simplest (mono- 
clinic) 2-4-3 I (Fig. 6) the distances to all 56 
next-nearest neighbors are the same as in 2- 
4-3 II (Fig. 7a). In addition to these two 
packings built of planar 4-layers there is a 
packing (2-4-3 T) built of nonplanar layers 
(6) which has the same density as those 
built from planar layers but a higher sym- 
metry. A projection of this structure is 
compared with that of 2-4-3 II in Fig. 7; we 
comment later on the close relation of the 
structure of Fig. 7b to the 1 l-packing based 
on nonplanar 6-layers. The packing l-6-2 
(Clarke No. 18, Slack 9.1) can be sheared 
on one or both sides of each layer to give 

structures of higher density, and lower 
symmetry, which are intermediate between 
structures of 9 and higher C.N.s. The ex- 
ample shown in projection in Fig. 8, l-6-2 
SS, is sheared on both sides to give next- 
nearest neighbors at 2.309 (Table IVb). The 
least dense 9-packing of Table V, l-4t-4 
(Clarke No. 14, Slack 9.2), has the most 
symmetrical coordination group of those 
listed. 

Sphere Packings 0fC.N. 10 

Three groups of three IO-packings are 
listed in Table V with densities 0.7025 (7~/ 
2fi), 0.6981 (2~/9), and 0.6657 (21r/3(* 
+ fi)). Most of those with the two lower 
densities were listed by Slack and some by 
Clarke. We consider first those of the third 
group. 

There is an indefinitely large number of 
ways of stacking 4t-layers to form 2-4t-4 
packings; of these only the simplest (or- 
thogonal) packing is listed. Packings l-6-3 
also form an infinite series because there 
are alternate ways of achieving a 3-contact. 
Clarke described two (his Nos. 15 and 
16) as having symmetrically equivalent 
spheres, but it has been pointed out (3) that 
the second of these cannot be described by 
a single set of equivalent positions, and that 
only two l-6-3 packings have this property. 
Using the usual cp terminology these are 
the sequences AABB . . . and AABBCC 
. . . (l-6-3 I and II). The environments of a 
sphere in these two structures are, of 
course, very similar. In fact, the numbers 
of neighbors at various distances are the 
same for the first 72 spheres beyond the 10 
nearest, after which there are minor differ- 
ences. 

Packings with density 0.6981 include two 
of the infinite family of 2-6-2 packings, each 
sphere of which makes 2-contacts on each 
side of its layer. The first (2 = 2) is the well- 
known bc tetragonal structure 2-6-2 I in 
which there is also closest packing in a sec- 
ond set of planes perpendicular to the first 
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set. In this packing spheres of alternate lay- 
ers fall above points A and D’ (Fig. lc). In 
the next simplest packing, 2-6-2 II, (2 = 3) 
spheres of successive layers fall above A, 
D”, and D”’ related by 31 (or 32) axes. The 
only cp layers in this packing are the origi- 
nal ones perpendicular to the screw axes. 

The bc tetragonal 2-6-2 packing may al- 
ternatively be built from layers which we 
call 4* intermediate between the 4t- and 4- 
layers. This layer has the angle aAa equal 
to 75”32’, AA’ = V%, aa’ = d, and AB/ 
AA’ = Q (nomenclature as in Fig. 1 and Ta- 
ble I.) If successive layers are translated by 
AB the packing 3-4*-3 repeats after five lay- 
ers in a direction normal to the layers, but a 
projection along aa’ shows that the packing 
is referable to the bc tetragonal cell of 2-6-2 
I. Because there are alternative positions 
for 3-contacts there is an indefinitely large 
number of polytypes. If 4*-layers are 
stacked so that successive layers fall alter- 
nately above A and B there is formed the 
orthorhombic packing 3-4*-3 II. 

Corresponding to the two simplest struc- 
tures formed from the 4” layer are the two 
simplest 3-4-3 packings, which have a den- 
sity (0.7025) slightly greater than that of the 
three packings just described. In 3-4-3 I 
successive layers are translated by the dis- 
tance AB equal to 3 AA’ (Fig. lb). In a 
direction normal to the layers the structure 
repeats after 8 layers, but it is referable to a 
bc orthorhombic cell (2 = 2) which is 
related to the layers as shown in Fig. 9. In 
this packing there are two sets of closest- 
packed layers inclined at an angle of 83”38’. 

In 3-4-3 II the spheres of alternate layers 
fall above points A and B in Fig. lb, and 
like hcp the structure repeats after 2 layers 
(Fig. 10). The lo-packings built from the 4-* 
and 4-layers are the analogs of the closest 
packings built from 6-layers (Table VI). 

Also included in Table V is a third pack- 
ing with the same density (0.7025) as the 3- 
4-3 packings; this is the simplest orthogonal 
sheared 2-6-2 packing. Successive layers 
are displaced by a/18 alternately to one side 
and the other of the normal position for a 2- 
contact. This is one example of the infinite 
number of packings intermediate between 
2-6-2 and 2-6-3, and is not a “minimal den- 
sity” packing symmetrically related to two 
packings of higher C.N. 

Sphere Packings of C.N. 11 

The simplest 2-6-3 packing is the mono- 
clinic 2-6-3 I (Fig. ll), and the simplest 
orthogonal variant is 2-6-3 II. Like l-6-3 
packings all 2-6-3 packings have pairs of 
adjacent cp layers. They are therefore con- 
vertible into the various cp sequences 
found as the packings of the anions in, for 
example, the Cd12 polytypes. The simplest 
relation is that between hcp, 2-6-3 I, and 
ccp (7). The spheres in both 2-6-3 I and II 
have very similar sets of more distant 
neighbors, the next 74 beyond the 11 near- 
est being at the same distances in the two 
packings. In a 2-6-3 packing built from pla- 
nar 6layers the positions for a 2-contact on 
one side of a layer and for a 3-contact on 
the other limit the point symmetry of the 
coordination group to m. There is, how- 

TABLE VI 

RELATIONBETWEENSPHEREPACKINGSOF lo- AND 12-COORDINATION 

Number of layers Space Number of layers Space 
C.N. ABIAA’ Symbol in repeat unit grow Density Symbol in repeat unit group 

10 I i 
3-4*-3 II 2 Cmcm 0.6981 3-4*-3 I 5 14lmmm 
3-4-3 II 2 Cmcm 0.7025 3-4-3 I 8 Immm 

12 B hcp 2 P6Jmmc 0.7401 ccp 3 Fm3m 
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ever, another packing with density 0.7187, 
namely 2-6-3 T, which has tetragonal sym- 
metry and a more symmetrical coordination 
group (point symmetry mm). This packing 
is built from corrugated 6-layers, and it rep- 
resents the arrangement of the anions in the 
idealized rutile structure (4); it is compared 
with 2-6-3 II in Fig. 12. The space group 
and equivalent positions are the same as 
those of 2-4-3 T, the major difference from 
which lies in the decrease in the c cell di- 
mension, normal to the paper in Fig. 7b and 
12b. This brings in two additional neighbors 
and increases the C.N. from 9 to 11. 

The 2-6-3 T structure of Fig. 12b consists 
of columns of octahedral groups, each shar- 
ing two opposite edges, which are normal 
to the paper in the projection of Fig. 12b. 
An interesting property of this packing is 
that it may be converted into hcp by rotat- 
ing these columns of octahedra in either di- 
rection, as indicated by the arrows in Fig. 
13 (3). 

The coordination polyhedra in 2-6-3 I and 
II are identical and very similar to that in 2- 
6-3 T. Both are irregular 4-connected poly- 
hedra with 22 edges (18 of length 2, and 4 of 
2.449) and 13 faces. Of the latter 8 are trian- 
gular (4 equilateral and 4 isosceles) and 5 
are quadrilateral (3 square and 2 rectangu- 
lar). The four kinds of faces are arranged 
differently in the two coordination polyhe- 
drabcompare the relation between the co- 
ordination polyhedra in ccp and hcp. In 
both of the cp structures the coordination 
polyhedron is a 4-connected polyhedron 

#I* 0. + .9.74* +. 19.47 - 

FIG. 13. Relation between hexagonal closest pack- 
ing and 2-6-3 T. 

TABLE VII 

RELATIONS BETWEEN SPHERE PACKINGS OF IO-, 1 l-, 

AND 12-COORDINATION 

C.N. 
(a) 
Density Density 

9 P42/mnm 4(f) 0.6911 Cmca S(f) 0.691 I 

10 
I 
I4lmmm 2(a) Immm 2(o) Cmcm 4W 1 o . 6981 Cmcm 4(c) 1 0.7025 

11 P4Jmnm 4(f) 0.7187 Cmca S(f) 0.7187 

(W 
.X=i x=&y=8 
Amam 4(c) (iy0) 

Pnnm 4(g) (00) Cmcm structures 

Structures 
intermediate / 

+ hcp P6Jmmc 
12-Coordination 

of Table V 

IO-Coordination 
between hcp 
and 2-6-3 T 

\ 
1 l-Coordination x=y 

P42/mnm 4(f) (x&l) 
1 l-Coordination 

(4 
# (Fig. 13) a 6 c x y Space group 

0 3.464 3.266 2 Q f P63/mmc 
4.87 3.451 3.352 2 0.187 0.228 Pnnm 
9.74” 3.414 3.414 2 0.207 0.207 P4dmnm 

14.61” 3.352 3.451 2 0.228 0.187 Pnnm 
19.47” 3.266 3.464 2 a t P6Jmmc 

with 24 edges (all of equal length) and 14 
faces (8 equilateral triangles and 6 squares). 

A density higher than 0.7187 can be 
achieved by shearing a 2-6-3 structure, and 
the packing with d,/d made equal to the ar- 
bitrary value 2.309 has the density of 
0.7209. This is included in Table V simply 
as an example of a structure with C.N. 
tending toward 12; it does not satisfy our 
criterion that it is a structure of minimal 
density symmetrically related to two struc- 
tures of higher C.N. 

Certain relations between some of the 
packings of Table V are more easily appre- 
ciated from the simpler Table VII(a). For 
each of the C.N.s 9, 10, and 11 there is a 
tetragonal and an orthorhombic packing. 
The tetragonal9- and 11-packings have the 
same space group (P4Jmnm), and the 
orthorhombic 9- and 1 l-packings have the 
same space group (Cmca). The two 9-pack- 
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ings have the same density (0.691 l), and the 
density of both the 11-packings is 0.7187. 
Table VII(a) also includes two lo-packings 
(with different densities) with the space 
group Cmcm; in fact there is an orthorhom- 
bit packing described by 4(c) of this space 
group in each of the three groups of lo- 
packings in Table V, namely, 3-4-3 II, 
3-4*-3 II, and 2-4t-4. 

The packings of lo-coordination with 
space group Cmcm are related to those of 
ll- and 1Zcoordination as indicated in Ta- 
ble VII(b). The set of equivalent positions 
4(g) of Pnnm, xy0, 270, d + x 4 - y it, and t 
- x t + y 4, describes the packings interme- 
diate between hcp and 2-4-3 T which corre- 
spond to values of r$ between those of Fig. 
13. If x = + these positions become 4(c) of 
Amam (an alternate setting of Cmcm), and 
if x = t and also y = & they correspond to 
the orthohexagonal description of hexago- 
nal closet packing (with a = 3.266, b = 
3.464, c = 2). Finally, if x = y (and a = b) 
the above set of equivalent positions be- 
comes 4(f) of P4zlmnm. Table VII(c) lists 
cell dimensions and values of x and y for the 
sphere packings of Fig. 13 and also for one 
intermediate value (4 = 4.87”) and the com- 
plementary structure (I$ = 14.61”), for 
which the values of a and b and of x and y 
are interchanged. Whereas all the struc- 

tures of Table VII(c) may be described by 
the position 4(g) of Pnnm, the special val- 
ues of x and y (with the appropriate values 
of the cell dimensions) lead to the higher 
symmetries shown in the table. For these 
structures, 

a = 2ti cos + 

b = 2(%‘% cos d, + m sin 4) 

c=2 

x = 4 - ](ti - tan +)/3ti] 

y = 8 - [( 1 + ti tan +)/(4 + V5 tan +)I. 
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